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We address the problem of diffusional interactions in a finite sized cluster of spherical particles for
volume fractions Vy, in the range 0-0.01. We determined the quasistatic monopole diffusion solution
for n particles distributed at random in a continuous matrix. A global mass conservation condition is
employed, obviating the need for any external boundary condition. The numerical results provide the in-
stantaneous (snapshot) growth or shrinkage rate of each particle, precluding the need for extensive time-
dependent computations. The close connection between these snapshot results and the coarse-grained
kinetic constants are discussed. A square-root dependence of the deviations of the rate constants from
their zero volume fraction value is found for the higher V) investigated. The behavior is consistent with
predictions from the diffusion Debye-Hiickel screening theory. By contrast, a cube-root dependence, re-
ported in earlier numerical studies, is found for the lower V) investigated. The roll-over region of the
volume fraction where the two asymptotics merge depends on the number of particles n alone. A
theoretical estimate for the roll-over point predicts that the corresponding ¥ varies as n "2, in good

agreement with the numerical results.

PACS number(s): 82.20.Wt, 81.40.Cd, 81.30.—t, 64.75.+¢g

I. INTRODUCTION

Diffusional coarsening represents an important and
commonly observed kinetic process in microstructural
evolution. Coarsening can occur among several micros-
tructural constituents ranging from the primary phases to
widely dispersed precipitates. The wide range of volume
fractions ¥y encountered in phase coarsening makes it
essential to have a fundamental theory of coarsening that
treats the volume fraction as an input parameter of the
microstructure.  The classical coarsening theory
developed by Todes [1] and Lifshitz and Slyozov [2] (TLS
theory) is limited to infinitesimally small volume frac-
tions. To date, scores of papers have been published at-
tempting to extend TLS theory to finite volume fractions
intrinsic to real microstructures. Several excellent re-
views have been published surveying these models along
with relevant experiments [3-5]. Nonetheless, even
finding the initial corrections to TLS theory in the limit
of small volume fractions remains an open question.
Specifically, the analytical theory for infinite systems sug-
gested by Marqusee and Ross [6] and Marqusee [7], based
on the diffusion analog of the Debye-Hiickel screening
effect, leads to deviations from TLS in the coarsening
rate, which are proportional to ¥}/2. By contrast, several
numerical analyses [8,9] dealing with finite systems clear-
ly show that this deviation is, instead, proportional to
V/3. The purpose of the present paper is to analyze how
the coarsening rates change in a finite cluster of a
specified particle density. We will show numerically that
both ¥}/? and V}/? behaviors may occur, depending on
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the number of particles comprising the cluster and its
volume fraction. The crossover between these behaviors
will be derived analytically using the Debye-Hiickel
screening concept.

II. THEORETICAL BACKGROUND:
MEAN-FIELD APPROACHES

The simplest model of coarsening in infinitesimally
sparse systems [1] assumes that all precipitate particles
remain spherical and remote from each other, and that
their positions remain stationary. The description of iso-
thermal coarsening is given in [1] in terms of the radius
distribution function F(R,t), where R and ¢ are the parti-
cle radius and the time. The norm of F(R,¢) is based on
the total number of particles per unit volume Ny, that is,

fo‘”F(R,t)dR =N, . (1)

With this normalization, the volume fraction ¥V of the
dispersed phase is given by

V= [ PR 0T RGR = 2T N, (R) . 2)

Supersaturation of the matrix solution is assumed to be
small, so that nucleation of new particles is precluded.
The continuity equation for particles in size space is

oF , 0

3 + 3R [V(R)F]=0, (3)
where v(R) is the time-rate of change of the radius R of a
particle. To obtain v(R), further simplifying assumptions
were made: (a) the kinetics of coarsening is limited by
volume diffusion; and (b) the diffusion is quasistatic.
Therefore, the diffusion equation describing the concen-
tration field, ¢ (r), in the matrix phase reduces to the La-
place equation
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Vip=0, 4)

where ¢=(c —c()/cy and ¢ is the equilibrium solubility.
The boundary conditions at the surface of the ith particle
are specified through the Gibbs-Thomson local equilibri-
um relation

‘Pi:R_ ’ (5)

where A is the capillary length given by

a=2r (6)
kB

Here, y is the particle-matrix specific interfacial energy,
1 is the atomic volume of the dispersed phase, kj is the
Boltzmann constant, and T is temperature. Additionally,
anisotropy of the interfacial energy and strain effects
were ignored.

The solution to Eq. (4), subject to the boundary condi-
tions (5) at the interface of each particle, may be written
in the form of the Coulomb potential (the solution given
by Eq. (7) is a monopole approximation, where the parti-
cles are treated as point sources and sinks. This is
justified by the large distances between the particles com-
pared to their radii)

) AB, N

POZ 2 e o

where ¢, is the background-matrix diffusion potential,

assumed uniform throughout the matrix phase; r is a field

point always in the matrix; r; locates the center of the ith

particle. The diffusion analog of electrostatic charge is
the volume flux per steradian, B;, given by

R;
R*

B,= |1— , (8)

where the critical radius R * is given by

R*:L_ 9)

P

The time-rate of change of the radius, v(R), used in Eq.
(3), is directly connected to B; as

2ADc, Q)

2 i
i

v(R;)=— (10)

Equation (8) provides the values of B;, but the value of
@, remains unknown. Todes suggested using the global

conservation of volume of the dispersed phase, neglecting
changes in the supersaturation within the matrix phase

[11:

_d_ 4‘)7' 3 o *3 —
. F(Rt3 dR = f ~F(R,1)="R*dR =0 .

(1m

Using the continuity equation to substitute for JF /¢,
one obtains
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f F(R,t)dR .
= ,or R*=(R) . (12)
¥ fo F(R,t)RdR <R>
Todes also introduced a dimensionless variable
p=R/R*. The dimensionality of the diffusion-limited

coarsening process implies that
=a(2ADc, Q1) (13)

where a is a dimensionless Kkinetic coefficient to be
defined later. Todes then found a one-parameter family
of self-similar solutions for the distribution function
F(R,t), given by the product-function form

Ny(t)
R*(¢)

With Eq. (14), the continuity equation (3) reduces to the
following ordinary differential equation:

df _ —4p’+(6/a*)(1—p) dp
f 3/ (1—p)+p* p

The number of real roots of the denominator,
D=(3/a®)(1—p)+p>, on the right-hand side (rhs) of Eq.
(15) depends on the value of @, which in turn influences
the qualitative behavior of the solution to Eq. (15). Fig-
ures 1(a)—(c) show the three possible behaviors of the
denominator. For a> (%)2/ 3 Fig. 1(a), there is no real
root of the denominator, and the solution to Eq. (15) is
analytic up to infinity. This solution, however, causes a
logarithmic divergency of the integral for the total
volume of the particles. Truncating the logarithmic tail,
however, destroys the self-similarity of the distribution
function f(p), because the relative density of particles at
large p values is gradually exhausted. For a <(2)*’, Fig.
1(c), the solution must be restricted between zero and the
first positive root of the denominator and set equal to
zero beyond, in order to prevent singular behavior of the
distribution function at the roots of the denominator.
These solutions are, however, unstable with respect to ap-
pearance in the system of a particle outside of the permit-
ted range as a result of coalescence. Lifshitz and Slyozov
[2], therefore, stated that the only stable solution to the
continuity equation (3) corresponds to such a value of a
that makes the two positive roots of the denominator
coincide, Fig. 1(b). That implies

(273273, (16)

F(R,t)= flp,a) . (14)

(15)

arLs=

It is important to note that although the TLS solution
to coarsening kinetics does not depend formally on the
value of the volume fraction V, it is not, in fact, extensi-
ble to any nonzero volume fraction. The restriction of the
TLS solution to the zero volume fraction is a conse-
quence of the contradiction between the infinite extent of
the Laplace diffusion field and the total neglect of direct
interactions among the particles. This contradiction
manifests itself even stronger in two dimensions, where
an analogous TLS theory cannot even be developed
without imposing some arbitrary cutoff radius to the
diffusion field, due to its logarithmic far-field behavior for
each individual particle [8,9].
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FIG. 1. Behavior of the denominator £ of Eq. (15): (a)
a>(2)23,(b) a=(2)*", (c) a<(2)*”.

There are two general approaches that are used to in-
corporate the influence of the volume fraction on coars-
ening kinetics. The earliest approaches were based on ar-
bitrary restriction of the extent of the interparticle
diffusional interactions to the average interparticle sepa-
ration (see [17] for a review). In sparse systems the
nearest neighbors, of course, cannot shield the Laplacian
field. Theories based on models using interparticle dis-
tance for the cutoff are generally in poor agreement with
experiment and numerical simulations [3,4,17]. For
higher volume fractions, 0.1 < ¥}, <0.6, however, direct
screening by nearest neighbors becomes more reasonable,
but generally the models that use a single cutoff radius do
not provide meaningful results for the specified range of
volume fractions (see Ref. [10] for a review).

Marqusee and Ross [6] and Marqusee [7], by contrast,
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restricted the extent of the Laplacian diffusion field by
taking into account screening effects in active two-phase
media containing a distribution of diffusional sources and
sinks. Instead of the Laplace equation, Marqusee and
Ross obtained the Poisson equation for the spatially
coarse-grained background diffusion potential ¢, namely,

Vip=—4m0o , (17)

in which the source/sink density o, in the matrix space
surrounding a particle is given by

o(r)= fo“’ABF(R,t)dR = fow[k—Rq)(r)]F(R,t)dR.

(18)

Note that here the background potential in Eq. (8), ¢, is
replaced by the coarse-grained potential ¢, which is con-
sistent with Debye’s approach. Carrying out the indicat-
ed integration on the right-hand side of Eq. (18) gives

o(r)=NyA—N,{(R)g(r), (19)

where N, and (R ) are defined by Egs. (1) and (12), re-
spectively. Substituting Eq. (19) into Eq. (17) yields the
diffusion analog of the Debye-Hiickel equation, namely,

Vip—kHp—¢,)=0, (20)
where

k*=47N, (R ) 1)
and

@o=A/(R) . (22)

Equation (20) is well known from the theories of ionic
plasmas and electrolytes, where it is used to describe the
electrostatic field developed in an active medium contain-
ing a distribution of quantized charges. In these theories,
the second term on the left-hand side of Eq. (20) describes
the space charge density caused by spatial redistribution
of the charges, in order to minimize the electrostatic en-
ergy. In the case of diffusional coarsening, however, the
positions of the ‘“charges” (diffusional source/sink
strengths) are fixed, but their values, the B;’s, depend on
the local background potential ¢(r), consistent with Eq.
(8).

The solution to Eq. (20) subject to the boundary condi-
tions, Eq. (5), is in the form of a Yukawa potential,

AB;
plr)=3 ~———exp(—«|r—r; )+, , (23)
i Ir_ril

where now the B,’s are defined as

Ri‘poc

B,= :

1_

(1+xR;))=BMS(1+kR;) .  (24)

B[S denotes the dimensionless volume fluxes (per stera-
dian) for particles in an infinitesimally dilute system, as
given in the TLS theory by Eq. (8). The coefficient « is
the reciprocal of the diffusional analog of the Debye
screening length. It represents the natural cut-off dis-
tance for direct particle interactions via the diffusion
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field, beyond which the particles are isolated from each
other by the intervening two-phase medium. As seen
from Eq. (24), kR; expressly captures the deviations in
the rate of particle size evolution from the TLS limit. It
is possible to use the same global stability analysis intro-
duced by Lifshitz and Slyozov [2] to obtain the charac-
teristic kinetic constant a, which determines the overall
rate of coarsening as defined in Eq. (13) (see [6] for de-
tails):

a(Vy)=ars(1+0.740V /> +h.o.t.) , (25)

where a s=(2)?? is the TLS limit for infinitesimally di-
luted systems (¥}, =0). Equation (25) shows that the
average particle size grows more rapidly than in the TLS
limit. Moreover, this correction, reflecting diffusional
Debye screening, implies other first-order corrections, in-
cluding the broadening of the size distribution function
and the difference between the average and the critical ra-
dii; all these corrections are proportional to the square
root of the volume fraction.

III. KINETIC PROPERTIES
OF FINITE COARSENING SYSTEMS

There are four physically distinct metric scales in any
finite coarsening cluster, i.e., a finite number of particles
confined to a finite volume: (i) the size of the particles, as
characterized by Ag =~ (R ); (ii) the interparticle spacing,
as characterized by Ay=~N; '3, where N, is the total
number of particles per unit volume, Eq. (1); (iii) the De-
bye screening radius Ap, =« !; and (iv) the extent of the
total coarsening system A, as defined for a “spherical
cluster” by A, =(47/3) 3 (n/Ny)3, where n is the
total number of particles remaining at a given time.
Note, it is always assumed that the cluster is locally
homogeneous and spatially isotropic, and that the overall
size of the cluster, A, is time independent. These as-
sumptions permit one to establish an analog of the
volume fraction for a finite cluster of particles,

4
?=1TR1'3
Vy=——"-"—"—, (26)
41 3
TAto[
where the denominator in Eq. (26) provides an estimate
of the spherical cluster volume.

By contrast with infinite systems, finite systems lack
uniform asymptotics, because any finite system ultimately
achieves its end state as a single particle in finite time.
Finite systems, instead, may only exhibit intermediate
asymptotics. By this we mean that the coarse-grained
average over time of these cluster parameters becomes
identical to those in self-similar infinite systems, even
though the instantaneous values of the time-dependent
parameters of finite clusters may fluctuate. All continu-
um coarsening theories, however, exclusively yield quan-
tities that are equivalent to the coarse-grained averages
over time for finite clusters. Specifically, therefore, the
coarse-grained intensive length scale parameters, viz. Ay,
A, and Ap, are expected to scale with time as predicted
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by continuum coarsening theories.

Weins and Cahn [11] were the first to estimate the
diffusional interactions among a few particles comprising
a small coarsening cluster. Later Voorhees and Glicks-
man [12,13] extended Weins and Cahn’s analysis to hun-
dreds of particles by using periodic boundary conditions,
and adapted Ewald sums to improve the convergence of
the numerical calculations. In finite systems, coarsening
always occurs via two distinct but related processes: the
continuous evolution of the particle radii, and the discon-
tinuous (instantaneous) disappearance of the smallest par-
ticles. The coarse-grained time averages depend on both
processes. Specifically, during the continuous process,
the average size of the particles decreases (along with the
total interfacial area), whereas the instantaneous disap-
pearances cause the average size to increase. The actual
evolution of the average radius consists of smoothly fal-
ling segments connected by vertical jumps whenever a
particle disappears, as observed in computer simulations
[13,15]. The coarse-grained average changed with time
as t!1/3, according to the TLS prediction.

A recent simulation and experimental study of coarsen-
ing in finite clusters of three-dimensional particles in-
teracting through a two-dimensional diffusion field
[14,15] shows similar discontinuous behavior of the aver-
age radius, whereas the coarse-graining behavior of the
average particle radius exhibited a power law of ¢!/,
characteristic of the continuum coarsening prediction for
the mixed-dimensional case (see Fig. 2). Thus, experi-
ments confirm and simulations show that the coarse-
grained intermediate asymptotic behavior of real, i.e.,
finite, coarsening systems is consistent with theoretically
predicted asymptotic power laws from continuum
theories.

Normally, the numerical data required for coarse-
grained averaging are obtained by time-dependent com-
puter simulations. Following such procedures for large
clusters (tens of thousands of particles) is computational-
ly intensive. There would be a great advantage in large
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FIG. 2. Instantaneous and coarse-grained time dependence
of the average particle size observed in computer simulation of

mixed-dimensional cluster coarsening [14,15].
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finite systems to limiting the numerical simulation to a
“snapshot” analysis of the rate of change of (R ) along
the continuous segments. It is unclear, however, how the
instantaneous slopes v(R;), defined by Eq. (10), are relat-
ed to the coarse-grained average time dependence of
(R). One can show, using first-order perturbation
theory, that the relative change in the kinetic constant, «,
from the Lifshitz-Slyozov stability analysis is proportion-
al to the relative change in the growth rate v(R ,, ), for
the largest particle within the TLS distribution, induced
by any small perturbation. Specifically, if a small distur-
bance to the particle growth rates, €(R), is introduced as

WR)=vys(R)[1+&R)], 27)

where vy is the nonperturbed value given by the TLS

theory, Eq. (10). The denominator, D, in Eq. (15), be-
comes
D=p*—Blp—1)(1+¢) , (28)

where S8=3/a®. Following the procedure set out in Sec.
II, we find the eigenvalue for 8 and the maximum value
of p by solving the equation set =0 and ’'=0. Seeking
first-order corrections to the eigenvalue, we write

B=Bris+68 (29)
and
p=prstop , (30)
where pris=32, and B s=2. Keeping only first-order
terms, we find
=—08B/2—(27/8)e=0, (31)

where € is evaluated at prg=3.

2°
dn=—(2%)e, and
a=ars[1+(3/16)3e(RILS)] . (32)

max

This results in

Here, RIL3=(3)(R ) and ar g=(%)*"* are the nonper-
turbed values given by the TLS theory. For example, if
the perturbation €(R) is caused by diffusional Debye
screening, Eq. (24), then Eq. (32) transforms to Eq. (25)
from the analysis by Marqusee and Ross [7]. The second
equation, ' =0, may be written as 32 /38p=0, or, keep-
ing first-order terms,

D' =6prrsdp —8B—Brrse —Brislprs—1)e'=0 . (337
A A
R, lr)— 1, !r1_f3|
A A Ay
|ty —r, R, lr,— 1] B,
A A AP
3=y 53—, R, B,
1 =
1
1
1 1 1 111 0]|e.

”‘» 3"» 3"»

w
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This gives the correction in p.,,, which, however, de-
pends not on € but on £’ =0de/98p,

8p=(3/8)¢’ . (34)

The snapshot numerical analysis, to be discussed
below, is capable of providing the €(R) values for each
particle in the cluster. In a finite cluster, however, one
does not have a statically valid representation of enough
particles at R_,, to guarantee an accurate estimate of
e(R ¢ ). Consequently, we will average the perturbations
over the entire system of particles, using the assumption
that the global average, {€(R)), reflects the behavior of
€(R .« )- This assumption is a rather likely outcome of
the self-similar behavior we are discussing.

IV. “SNAPSHOT” NUMERICAL ANALYSIS

The mathematical formulation for the present numeri-
cal study is based on the monopole approximation to the
quasistatic diffusion solution shown in Eq. (7). The parti-
cle growth rates were calculated for each individual parti-
cle in the cluster according to Eq. (7), using the exact
monopole expressions for the dimensionless diffusional
source/sink strengths B;’s, namely,

n Bj
Pt X T ((35)

J=1,j%i Irj—r,-|

A

Here n is the total number of particles in the cluster, A is
a capillary length defined in Eq. (6), and the expression in
the parenthesis represents the local analog of the back-
ground diffusion potential used in the TLS theory, Eq.
(8). Equation (35) represents a set of n linear equations
with n +1 unknowns, viz., the B;’s and ¢,. One addi-
tional equation is needed to close the system. In previous
simulations such an equation was provided by an external
boundary condition, e.g., the periodicity condition used
in [9,13]. In the present work we employ, instead, a con-
servation equation for the total volume of the particles, as
suggested in [11,15]:

n
> B;=0. (36)
i=1
A version of the Gauss-Seidel iterative algorithm was em-
ployed for solving the set of equations given by Egs. (35)
and (36), which equations may be written in matricial
form as

(37)
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A linear projection to n Xn subspace was employed to
eliminate the last row and column and make the matrix,
Eq. (37), suitable for applying the classical Gauss-Seidel
linear solver.

The cluster parameters in the “snapshot” simulation
are the set of n particle center coordinates {r;} and the
set of n particle radii {R;}, both of which are measured
in units of A. The n particle center coordinates in this
simulation are chosen randomly inside a sphere of radius
A Each particle was assigned a radius randomly distri-
buted around the average value (R ) =Aj according to
various distributions. Specifically, we used the TLS
particle-size distribution and rectangular distributions of
various widths. An influence of the particle-size distribu-
tion on the kinetic results was not observed. The parti-
cles are not allowed to overlap. This restriction results in
some correlation between particle sizes and positions,
which tends to vanish with decreasing volume fraction.
The volume fraction itself was varied by changing the ra-
tio A} /A3, according to Eq. (26), while maintaining
fixed relative positions and radii of the particles.
Specifically, we proportionally changed all the interparti-
cle distances and, consequently, changed the size of the
cluster and the volume fraction, whereas the particle ra-
dii remained constant.

V. RESULTS AND DISCUSSION

Figure 3 shows the dependence of the volume fraction
of the observed relative deviations,
(MR, Vy))—{(¥(R,0))

(v(R,0))

in the values of the rate of change of the average radius

A(Vy)= , (38)

0
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(v(R,Vy)) compared to that for the zero volume frac-
tion (v(R,0)). The values at nonzero volume fractions
were obtained from the snapshot calculations, using Eq.
(37), whereas the zero volume fraction term is obtained
from the TLS expression, Eq. (8). The results are shown
for clusters containing 10, 100, and 1000 particles. The
deviations are plotted on log-log coordinates vs the
volume fraction Vy,, given by Eq. (26), which was varied
for each calculation by changing the ratio A} /A2, as de-
scribed above. There appear to be two distinguished lim-
its for the slopes, representing the exponents of the
leading-order corrections introduced by the volume frac-
tion. For the higher ranges of volume fraction the ex-
ponent is 1, in agreement with Debye screening theory,
Eq. (24). Combining Egs. (2), (8), (10), (21), and (24) with
the definition of A, Eq. (38), we obtain the expression for
A in terms of the volume fraction,

172
1TEa |13 VY/2=0.695V1%, (39)
H_1—H—3 M3

where the p;’s are the ith moments of the TLS distribu-
tion defined as

fo‘”R"F(R,t)dR
 (R)N,
The coefficient on the rhs of Eq. (39) is slightly different
from that appearing in Eq. (25), because these coefficients
reflect different combinations of the moments of the dis-
tribution function.

For the lower ranges of volume fraction the exponent
appearing in Fig. 3 is 1, consistent with earlier simula-
tions [13] and theories employing a cut-off radius based

A:

10 ' ! ! T T T T T T
V.(10)
10' F Vv'(100) ¢ L. _
VV'(1ooo) et ’of,, ,:,
Y _ - X |
0% f o : ° .?_.0-‘/. ’ 1/2
* 0‘., _ P :
< .’ o ° l-o‘ .—./” |
¢ ° B L e e m ==
10° o R A 1
1/3 et , o ¥
. - 3 o - .-
.- - o © I
10* | . o B e |
. . © ° . n ‘L 12 Theory '
o ° T =" A =0.695 VV . 10 particles
10° S ° 100 particles ]
) = 1000 particles
10°® ! ! ! I | , | | )
107" 107° 10°® 10° 10 102

volume fraction, VV

FIG. 3. Relative deviation A of the kinetic rate constant for the coarsening of finite clusters at various volume fractions from that
at zero volume fraction. These data are obtained by snapshot monopole calculations. The theory refers to Eq. (39). Arrows corre-
spond to the rollover volume fractions, where the exponent changes from —;- to %, as predicted by Eq. (45).
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on the interparticle separation [16]. The roll-over point
between the two exponents depends on the number of
particles, n, in the cluster, so that for clusters with larger
n the transition occurs at progressively lower volume
fractions. To explain the observed rollover behavior we
substitute Eq. (2) into Eq. (21). This yields the Debye
screening length A in terms of volume fraction ¥V as

Ap=3"Y2(R*) /(R NWX V) /2. 41)

The spatial extent of the cluster, A, can also be estimat-
ed in terms of Vy, as

A =47/3)7 X n /Ny) P =n1 (R P(Vy) T3
(42)

A comparison of Egs. (41) and (42) shows that the Debye
screening distance grows faster with decreasing volume
fraction than does the cluster size, holding other system
parameters constant. This implies that at some small
volume fraction, ¥V}, the Debye screening distance A
exceeds the cluster size, and then diffusional screening is
precluded.

When screening is no longer possible because of the
sparsity of the cluster, then the deviations from TLS
theory no longer have to be proportional to V}/2
Indeed, comparing the TLS result, Eq. (8), with the
monopole expression, Eq. (35), one obtains for the devia-
tion from TLS

R;

_Ri) g BiHOB
A

OB; =

1

. (43)

j=tye Il

For a sparse system, 8B; on the rhs of Eq. (43) may be
neglected. The rhs of Eq. (43) may then be estimated, us-
ing the fundamental metric scales of the system, as
B;Ag /Ay. In terms of the volume fraction, one may ex-
press Eq. (35) as

~_Ar _(R) _ _(R)
B, Ay N3 (R}H3

vys. (44)

Equation (44) shows that for extremely sparse clusters,
the leading order deviation from TLS kinetics goes as
Vy/3. This result is consistent with the asymptotic
analysis performed in [12] for a periodic system.

The rollover point at which the exponent changes from
4 to L occurs when the Debye screening distance be-
comes comparable to the cluster size. The corresponding
volume fraction, V', may be estimated from the condi-
tion A,;=Ap, which with the use of Egs. (41) and (42)
gives the result

«_ (R?®) 1 1
Vy= 3 2 = 2
(R)*27n*  27n
Figure 3 also shows the theoretical rollover points cal-
culated from Eq. (45) denoted by vertical arrows for clus-
ters containing n =10, 100, and 1000 particles. The pre-

dictions from Eq. (45) appear satisfactory for n =100 and
1000, despite the fact that the clusters investigated here

(45)
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have relatively few particles to provide the Debye screen-
ing behavior. We note that a cluster with 1000 particles
contains only about six interparticle distances from its
center to its periphery. The cluster containing ten parti-
cles fails to show screening behavior for volume fractions
approaching 1%. Diffusional interactions in clusters
with volume fractions above about 1% would not be
represented accurately by the monopole approximation.

VI. CONCLUSION

(i) Monopole snapshot calculations provide an efficient
method for estimating the coarse-grained rate constants
in finite clusters of coarsening particles. Prior to the de-
velopment of this technique, fully time-dependent simula-
tions were required to obtain this information.

(ii) Extending the definition of volume fraction to a
finite cluster permits investigating the influence of the
nonzero volume fraction on the coarsening kinetics.

(iii) The present results confirm that in finite clusters in
the limit of low volume fraction the leading correction to
the TLS rate constant is proportional to ¥}/>. For higher
volume fractions, or for a sufficient number of particles,
Debye screening occurs and the leading-order term be-
comes proportional to V}/2.

(iv) The rollover point between the two Kkinetic
behaviors, that is, the critical volume fraction at which
the Debye screening distance is comparable to the cluster
size, is given by Eq. (45) and depends on the number of
particles in the cluster. For clusters with only 1000 parti-
cles, the roll-over point is already as low as ca. 3X 1078
This implies that in most experimental coarsening sys-
tems V}/3 behavior should not occur.

(v) Inasmuch as Debye screening is not directly appli-
cable to small clusters, its apparent success in explaining
the results of these calculations requires further analysis.
Larger-scale calculations with clusters containing much
greater numbers of particles will be required to resolve
this interesting issue, as well as to provide additional in-
formation on correlation effects and the influence of the
cluster periphery on coarsening kinetics.

(vi) At volume fractions above ca. 1%, particle in-
teractions become more complex than can be described
with monopole approximations and Debye screening.
Other techniques that incorporate spatial correlations
among the particles, shape changes, direct screening, and
higher-order multipole interactions must be employed.
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